TOTAL SYNTHESIS OF 11-DEOXY-11 β -HYDROXYMETHYL PROSTAGLANDIN E,¹⁾

Junya Ide and Kiyoshi Sakai*

Central Research Laboratories, Sankyo Co., Ltd.

1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan

(Received in Japan 4 March 1976; received in UK for publication 17 March 1976)

Current interests in the prostaglandin field are focused on the synthesis of novel prostaglandin congeners possessing potential specific pharmacological properties free of undesirable side-effects.

In a previous communication²⁾, we have reported a synthesis of ll-deoxy-llahydroxymethyl prostaglandins, among which ll-deoxy-lla-hydroxymethyl $PGE_1^{(2)}$ <u>l</u> and $PGE_2^{(2,3)}$ showed a strong uterus contraction activity in guinia pigs⁴⁾. In connection with these findings we are further interested in the biological activities arising from the stereochemical differences of prostaglandin homologs.

This publication describes a stereo-controlled synthesis of ll-deoxy-ll β hydroxymethyl PGE₁ <u>2</u> and its 8-epimer <u>3</u>, i.e., 8,12-cis-ll,12-cis-isomer, which is an interesting homolog from chemical and biological view points.

Oxidative cleavage of 4-cyclohexen-1,2-cis-diol dibenzylether $\underline{4}^{5}$ with $0s0_4$ -NaIO₄ in aq-dioxane followed by oxidation with Jone's reagent, after esterification with CH_2N_2 , provided the meso-diester 5 [55%, ir⁶: 1740, 1100; nmr: 4.45 (4H, s, OCH_2Ph), 3.60 (3H, s, $COOCH_3$), 3.48 (4H, m, $-CH_2O_-$); m/e: 414 (M⁺)]. Dieckmann condensation of 5 with t-BuOK in benzene under reflux gave 2-carbo-methoxy-3,4-cis-dibenzyloxymethyl cyclopentanone <u>6</u> [88%, ir: 1760, 1735; nmr:

4.56 and 4.50 (4H, two s, OCH_2Ph), 3.84 (3H, s, $COOCH_3$); m/e: 382 (M⁺)]. Alkylation⁷⁾ of <u>6</u> with methyl 7-iodo-5-heptynoate⁸⁾ and t-BuOK in toluene yielded diester <u>7</u> [95%, ir: 1760, 1735, 1220, 1095; nmr: 4.49 and 4.43 (4H, two s, OCH_2Ph), 3.65 and 3.50 (6H, two s, $COOCH_3$); m/e: 520 (M⁺)]. Catalytic hydrogenation of <u>7</u> over 5% Pd-C in benzene gave the saturated diester <u>8</u> (95%, ir: 1755, 1740, 1730; m/e: 524 (M⁺)], which was treated with NaOMe in MeOH under reflux to give the ring-opened triester <u>9</u> [96%, ir: 1738; nmr: 4.40 and 4.35 (4H, two s, OCH_2Ph), 3.64 (6H, s, $COOCH_3$), 3.56 (3H, s, $COOCH_3$); m/e: 556 (M⁺)].

Dieckmann condensation of 9 with NaOMe in DMSO-MeOH⁹ afforded regiospecifically the tetrasubstituted cyclopentanone 10 [81%, ir: 1755, 1735; nmr: 4.41 and 4.38 (4H, two s, OCH₂Ph), 3.66 and 3.64 (6H, two s, COOCH₃); m/e: 524 (M^+)]. Cleavage of dibenzylether group of <u>10</u> was accomplished by catalytic hydrogenolysis over 10% Pd-C in THF in the presence of p-TsOH to afforded the diol 11. Without purification, treatment of the crude diol 11 with catalytic amount of p-TsOH in benzene-dioxane yielded the cis-fused bicyclolactone 12 [92%, 1784, 1740; m/e: 312 (M^+)]. After masking the hydroxyl group of <u>12</u> with dihydropyran, hydrolytic decarboxylation of the lactone $\frac{12}{12}$ with Na₂HPO₄ in aqdioxane under reflux, gave the 8,12-trans-alcohol 13¹⁰⁾ [83%, ir: 3460, 1740; nmr: 4.60 (1H, br s, 0,), 3.66 (3H, s, COOCH₃), 2.56 (1H, s, OH); m/e: 442 (M^+)]. Removal of the tetrahydropyranyl group of <u>14</u> with p-TsOH in aq-MeOH, after protecting the hydroxyl group of 13 with ethyl chloroformate and pyridine in THF, gave the alcohol <u>15</u>[73% from <u>13</u>, ir: 3500, 1740; nmr: 4.25 (2H, m, EtOCO₂CH₂-), 4.19 (2H, q, J=7.0 Hz, MeCH₂OCOO), 3.00 (2H, m, -CH₂OH), 2.18 (1H, s, OH), 1.30 (3H, t, J=7.0 Hz, OCO₂CH₂CH₂); m/e: 358 (M⁺)].

Collins oxidation of <u>16</u>, after usual thicketalization of <u>15</u> with ethanedithicl and BF_3 -etherate in CH_2Cl_2 , followed by Wittig reaction with tri-nbuty1-2-oxo-heptylidene phosphorane in ether at room temperature, yielded the enone <u>17</u> [64% from <u>15</u>, ir: 1690, 1670, 1620; nmr: 3.27 (4H, s, $CH_2S_{CH_2S}$), 3.65 (3H, s, CO_2CH_3), 6.07 (C-14 H, d, J=16.0 Hz), 6.77 (C-13 H, d d, J=8.0, 16.0 Hz); m/e: 528 (M⁺)]. Reduction of the enone <u>17</u> with NaBH₄ in abs. MeOH at O^O followed by hydrolysis with K_2CO_3 -MeOH gave a mixture of 15-epimeric alcohols No. 17

<u>18a</u> and <u>18b</u>, which were effectively separated by silica-gel chromatography. The more polar fraction on TLC was tentatively assigned to the desired 15α epimer <u>18a</u> and the less polar one to the 15β -epimer <u>18b</u>.

Dethioketalization of <u>19a</u> after successively protecting¹¹) the hydroxyl group with dihydropyran and hydrolysis of the ester group of <u>18a</u> with 10% NaOH in aq-MeOH, was effected with HgCl_2 -HgO in aq-MeOH at 45° followed by removal of the tetrahydropyranyl group with p-TsOH in aq-THF to afford 11-deoxy-11β-hydroxymethyl PGE₁ <u>2</u> [20% from <u>18a</u>: m.p. 55-56.5° ir: 3500, 1730; nmr (CD₃COCD₃): 3.56 (2H, m, -CH₂O), 4.04 (1H, m, $\frac{-CH}{OH}$), 5.52 (C-12 H, q_{AB}, J=4.5 and 15.0 Hz), 5.82 (C-13 H, q_{AB}, J=9.0 and 15.0 Hz); m/e: 350 (M⁺-H₂O)].

It is noteworthy that treatment of ll-deoxy-ll β -hydroxymethyl PGE₁ 2 with 20% NaOH at room temperature for 30 min gave the 8-epimerized isomer 3 in the equilibration of 2 in the ratio of 1 : 1 [3: m.p. 107.5-109°: ir: 3500, 1730; nmr (CD₃COCD₃): 3.57 (2H, br d, -CH₂O), 4.02 (1H, m, $\frac{-CH}{OH}$), 5.16 (C-14 H, q_{AB}, J=9.0 and 15.0 Hz), 5.60 (C-13 H, q_{AB} J=6.1 and 15.0 Hz); m/e: 350 (M⁺-H₂O)].

<u>Acknowledgement</u>: The authors thank Director Dr. K. Arima, Assistant Director Dr. Y. Kishida and former Assistant Director Dr. K. Tanabe of this laboratories for their valuable help and advice.

References and Notes

- Synthetic studies on Prostanoids X. Part IX. K. Kojima and K. Sakai: Tetrahedron Lett., 101 (1976).
- 2. K. Sakai, J. Ide, O. Oda: Tetrahedron Lett., 3021 (1975).
- a) A. Guzman, J. M. Muchowski: Tetrahedron Lett., 2053 (1975), b) G. L.
 Bundy: Tetrahedron Lett., 1957 (1975).
- 4. In the uterus contraction of guinia pigs <u>dl</u>-ll-deoxy-lla-hydroxymethyl PGE_1 showed an activity about half as potent as PGE_1 and <u>dl</u>-ll-deoxy-llahydroxymethyl-PGE₂ about one sixth as potent as PGE_2 .
- 5. E. L. Eliel, C. Pillar: J. Amer. Chem. Soc., 77, 3600 (1955).

1369

- 6. $IR(cm^{-1})$ spectra were taken in neat and nmr (δ) spectra in CDCl₃ solution containing tetramethylsilane as internal standard unless otherwise stated.
- 7. Alkylation of $\underline{6}$ with 7-iodoheptanoate gave a mixture of 0-alkylated and C-alkylated products.
- 8. E. S. Ferdinandi, G. Just: Can. J. Chem., <u>49</u>, 1070 (1971).

1370

- 9. M. Fieser, L. Fieser: Reagents for Organic Synthesis vol. 2, 158 (1969).
- 10. Treatment of 13 with K2CO3 in MeOH partially gave the 8-epimerized product.

 Dethicketalization of <u>19a</u> without protecting the ll-hydroxyl group resulted in a complex mixture.

 $\int_{\text{THP}}^{C_5H_{11}} R^2 = \text{THP} R^3 = H$

<u>19a</u>